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In this report, several commonly used matrices and transforma-

tions employed in the description of polarized waves and in the reception,

scattering, and transmission of polarized radiation are found. The pur-

pose is twofold: (1) To provide a complete development of these import-

ant concepts to the person unfamiliar with them, and (Z) to provide a

summary and reference of these matrices and their interdependence

relationships to the person who must frequently employ them in analysis.

The first section discusses and defines the representation of

general elliptically polarized waves in terms of orthogonal polarization

states; two sucn sets of states are discussed in particular, the linear
or Cartesian and the circular.

The second section develops and discusses the elementary scat-

tering matrix for a surface, relating the scattered electric field to the

incident electric field. Transformations between tne scattering matrix

in linear polarization states and that in the circular states, and tl_e

relationships between the circular scattering cross-sections and the

linear scattering cross-sections are given in detail. The special case

of back-scattering is also discussed.

The concept of the vector height of an antenna is applied to trans-

mission and reception of polarized waves, and used to discuss the com-

plete process of transmission, scattering, and reception of radiation.

The determination of the elements of the scattering matrix of a _tationary

surface from measurements of power is discussed, and typical plots of

power received from an arbitrary surface in various polarizations are
shown.

The Stokes parameters of a polarized wave are developed in terms

of the operational concept of the power received from an antenna. The

matrix relating the Stokes parameters of a wave scattered from a sur-

face to The Stokes parameters of the wave incident upon it is then derived

in terms of the elements of the simple scattering matrix. Detailed tables

are provided for a number of special cases of interest.
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SUMMARY OF CONCEPTS AND TRANSFORMATIONS

COMMONLY USED IN THE

MATRIX DESCRIPTION OF POLARIZED WAVES

4 REPRESENTATION OF ELLIPTICALLY

POLARIZED WAVES

Any general elliptically polarized electromagnetic wave the

electric field of which is in the plane perpendicular to the direction

of propagation may be represented in any number of ways[ 7, 9] • The

most common are the use of two orthogonal unit vectors (either ortho-

gonal in a real sense or in a Hermltian sense) to represent the polar-

ized electric field. In all of these representations, the contravarlant

components along these two unit vectors (the electric field components)

must be complex.

The most common representation of elliptical polarization is the

use of two of the three Cartesian coordinates (the third, z here, being

assumed as the direction of propagation). A wave with this representa-

tion has the following form:

E(t) = E x _ ej(_t-kz) + Ey _ ej(_t-kz) .

In this case,

as shown below:

F-.xand Ey are complex quantities, repre s entable

However, one of the phase angles may be set equal to zero (or

absorbed by a shift of _t = a in the specification of the time origin).

Therefore write tnese components as

= = ; 5=_ -a.



Here 5 is the difference in phase between the x component of

the E field and the y component. Now there are essentially three in-

dependent quantities wnich specify the polarization in the Cartesian

system, two of these being the magnitudes (always defined positively)

of the waves along the coordinate axes, and the third being the phase
difference between the two.

Since it is true that three quantities, in general, are necessary

to specify elliptical polarization in a Cartesian system of representation,

then it is reasonable to assume that any system employing two orthogonal

vectors to represent elliptical polarization will require three independent

quantities to represent the wave completely.

Although it has not been mentioned, it is possible that these three

independent quantities specifying the polarization (i. e., IEx I' tLEe y t'
and 5) in the Cartesian system can vary with time. However,

generally accepted definition of "complete polarization" demands the

following: (1) The ratio of the magnitudes must remain constant, and

(2) the phase difference, 5, must remain constant, and may n3t change

in sign. These requirements are understandable when polarization is

viewed as a normalized ellipse traced out by the tip of the normalized

field vector in the plane perpendicular to propagation. In order for

this ellipse to maintain the same shape and orientation, it is necessary

for the axial ratio to remain constant (contained in the ratio of electric

field magnitudes), and also for the orientation of the ellipse and direction

of motion of the tip of the field vector along the ellipse to remain un-

changed (both determined from the sign and magnitude of the phase dif-

ference5). Any wave which does not meet the above requirements of

the definition for "complete polarization" is said to be "partially polar-

ized", and may be represented as the sum of a completely polarized

wave and a "randomly polarized" or "non-polarized" wave[ 11]. The

discussion in this report is confined to completely polarized waves.

Many times it is co,xvenient or necessary to resolve an elliptically

polarized wave already specified in the x-y plane of one Cartesian system

along the axes x'-y' of another Cartesian system, both with the z and z'

axes coinciding with the direction of propagation. The relationship be-

tween these two Cartesian systems may be viewed as a rotation of the

x'-y' axes of the second system by an angle ¢ in the counterclockwise

sense about the z axis from the original x-y axes when looking in the

direction of the negative z axis, i.e., the direction from which the wave

is coming. The components in the new x'-y' system are given by (see

Fig. 1 )
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Ey E(t}

Ex
Direction Of Propagation

Fig. i. Rotation of axes.

whe re

and

A •

"E(t)= Ex,_' eJ(_t'kz) + Zy, y' e_(_°t'kz),

,,;,x " - y" = COS c_ ; -y. = sin <_ - x • ,

Exl = E x cos dp+ Ey

EX' ="E x sin _b+ E 7

sin

COS _ .

Matrix representation gives a convenient way of expressing the

above relation between the components in the x'-y' system and those in

the original x-7 system; matrix algebra can then be used to provide an

orderly method of finding the inverse relationship, i.e., the components

in the x-y system expressed in terms of the components in the x'-y'

system. These representations are shown below.



Define

[Tr] L-sln*c°s "l= [ Tr]

Ey I E

Then

[ Tr ]-_ = ; = [ Tr ]-_

Lstn ¢ cos (h Ey [Ey,j

One reason a person may have for resolving the components in

one Cartesian system along newly defined axes x'-y' is that ofmaking

the new x'-y' axes lle along the major axes of the polarization ellipse.

This is easily done by adjusting @ until the complex phase difference

between the new set of components F_.xland Eyt is identically w/Z.

Another convenient set of orthogonal unit vectors (this time

orthogonal in an Hermitlan sense) which proves quite useful in the re-

presentation of elllptlcally polarized waves are those which describe a

right and left circularly polarized wave; such a representation is con-

venient because right and left circularly polarized waves are employed

in many applications, and they are therefore familiar to many. In this

system of representation_ an elliptically polarized wave is specified as
follow s:

E(t) = ERAr ej(et'kz) + EL_ ej(_t'kZ) .

As in the case of the Cartesian representation, ER, and E L are
complex in general. The unit vectors, _ and _, associated with the right

and left circularly polarized components, respectively, have the following

properties:

^ ^ i'* ^ (i' ^,_)=r. =t.r = ,r)=0
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and

... = Ith = • = 1.

The parenthetical notation above refers to the inner product in

a Hermitian sense, and may be used interchangeably with the dot pro-

duct notation as shown above.

In order to find the transformation between the components of

an elltptically polarized wave expressed in The Cartesian system and

its components in the circular system, it is helpful to examine first

the expression for a right circular and left circular wave in the

Cartesian system• Such an expression for the right circularly polar-

ized wave is given below:

A .A

ER(t) = El _ e j(wt-kz) -jEI _ e j(wt-kz) -C_)_-2- El e j(c°t-kz).

The expression for the left circularly polarized wave has the

following form:

_x____) e j(c_t-kz)EL(t ) = Ezx A e j(c°t-kz) + jE2_ e j(_t=kz) _ El

These expressions conform to the generally accepted definition

of a right circularly polarized wave as one whose total electric field

vector is rotating in a clockwise sense when looking along the direction

of propagation; the left circularly polarized wave has a counter clock-
wise sense of rotation when viewed in the same direction.

It is evident immediately that the following inner products hold

t rue:

• =1= _ A A

x,g I" IT)

and

x_jyl A AA .A (.x+jy_ *

t_ i" \_/ :o:
^ ^

•
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A
This suggests the logical defin_+4._n for the unit vectors, r and _,

discussed previously, since both these sets of unit vectors obey the

same inner product laws in a Herrnitian sense; therefore, define

A .A

r= / and _ = \!L ]

It will be desirable, then, to find a transformation which will

relate the Cartesian components of a general elliptically polarized

wave to the components in the circular system of representation. This

transformation will be evident upon re-arranging the equation for an

elliptical wave in Cartesian coordinates as follows:

or

-- ^ e j(_t-kz) [ Ex xA + Ey_r] e j(a_t-kz)E(t) = Ex xA e j(_°t-kz) + Eyy =

(Ex-jEO-- (Ex+jEy) ^ (Ex+jEy) _ + (Ex-jEy) xA +j _ eJ(_t-kz);E(t) = 2 x - j 2 2 2

I •

or

E(t)-- (Ex+jEY'_Ar e j(_t-kz) + (Ex-jEy_ _ eJ(_t-kz)

From the last equation, the components of the electric field in

the circular representation are obvious:

ER Ex +j Ey == ; E L Ex'jEy

Again matrix representation provides a convenient expression of

the transformation between an elliptically polarized wave represented

in the Cartesian system and the same wave represented in the circular

system; matr_ algebra again provides a simple means of finding the

inverse transformation, i.e., the expression of the Cartesian components



of an elliptically polarized wave in terms of the circular components.

These transformations are given below.

I

J

!

A

[ T c ]

- 7
Ex [

I

I

Ey
i

i -j I

Define

(z)

Exl

I

_i

-J__ i E

.

i

ER

EL

[T c ]

1
I

Ex

]

Ey l
Then

1 1

-A A.

E x

Ey

= [Tc ]-l

E L

As mentioned previously, the Cartesian and the circular repre-

sentations of an elltptically polarized wave are only two of many methods

using orthogonal unit vectors for representing the same wave. The re-

presentation in Cartesian coordinates is oftentimes alternatively referred

to as representation by linear polarization states. It should be mentioned

in passing that all these methods of representing an elliptic ally polarized

wave by orthogonal unit vectors have one point in common; i. e., the com-

ponents of the unit vectors in any orthogonal representation lie at opposite

ends of a diameter through the Poincare' sphere. The two components in

the Cartesian system lie at opposite ends of a diameter on the equator

of the sphere. The two components in the circular system lie at the north

and south pole of the sphere. Since there is an infinity of different poss-

ible diameters passing through this sphere, there is an infinity of possible

orthogonal representations for any general elliptically polarized wave.

Actually, any two different points on this sphere, whether they lie at

opposite ends of a diameter or not, represent two different and indepen-

dent polarization states (although not orthogonal), and they may be used to

7



represent any elliptical wave (so long ',s neither of these points is a

"null" point [6 ] for that particular wave).

It should also be noted that an elliptically polarized wave, toward

which the full attention of this se=tion has been devoted, is the most

general case; linear and circular poiarication of a wave are merely de-

generate cases of elliptical polarization. Thus the study of the most

general case applies equally well to these special degenerate cases.

The main points of this section have been a discussion of the num-

ber of necessary and sufficient independent pieces of information requir-

ed for the complete specification of the polarization state of a wave, the

definition of "complete polarization" of a wave, and a discussion of the

method of representing a general elliptically polarized wave by ortho-

gonal unit vectors was discussed. As one example, the Cartesian system

was examined and the transformation from one Cartesian system, x-y, to

another, x'-yt was found and discussed; the transformation and its in-

verse is a circular system; the transformation between the Cartesian and

the circular system was derived, along with the inverse transformation,

and is shown in Eq. (2).

THE ELEMENTARY SCATTERING MATRIX

AND SCATTERING CROSS-SECTIONS DEFINED

An incoming electromagnetic wave is scattered by an element of

surface dA, as shown in Fig. 2. In the most general case both the in-

cident and the scattered fields are elliptically polarized, but do not

necessarily have the same polarization; thus depolarization takes place

because the surface element may involve some roughness, and because

scattering is not restricted to the specular direction in general. The

change in polarization state between incident and scattered wave upon

striking a surface element involving roughness will also be a function of

the frequency (and therefore wavelength of the wave, and also upon the

orientation of the element of area dA.

Since any two orthogonal polarization states may be chosen to repre-

sent the polarization of the incident and scattered waves, it is advanta-

geous to choose representations amenable to the coordinate system selec-

ted and to the method of specification of the incident and scattering dir-

ections. The electric field vector, the polarization of which will be de-

scribed, lies in a plane perpendicular to the direction of propagation for

both the incident and the scattered wave. Two convenient representations

are in terms of the Cartesian or linear polarization states and in terms of

the circular polarization states, both discussed in the preceeding section.

First the polarization will be represented by the former method, and then

8
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Fig. 2. Scattering of a polarized wave

from a surface element dA.

_y

the transformations of the preceding section will be used to convert to

the circular representation.

The usual arrangement of the coordinate system is such that the

vertical plane of incidence is the y-z plane, with the origin centered at

some convenient point on dA. Then the directions of travel of the in-

cident and scattered electromagnetic waves of interest (for example,

those shown in Fig. 2) are completely specified by the angle of incidence,

8i and the scattering angles, 8 s and _s-

The most obvious sets of Cartesian unit vectors to choose for these

waves, both sets lying in planes perpendicular to the directions of pro-

pagation, are the unit vectors _i, _i and _s' _s, i.e., the two sets of

angular unit vectors in a spherical polar coordinate system along two

radii extending out from the origin, one in the direction the incoming

wave and the other tn the direction of the outgoing wave. (Note: £_i --

270" with the incident wave lying in the y-z plane). The components of

the electric field of the incident and. scattered waves along these unit

vectors will be denoted by E i E_ and E_ E_, respectively.

Assume that the scattering process from the element dA is linear.

Then, by superposition, one can assume first that the surface Ks illuminated



only with a linearly polarized wave in the 8i direction, E_. The field

scattered in the direction (8 s, q_s) will have a component of polarization

in the e s direction, i.e., E_. The relationship which exists between

them for a given surface element, frequency, and orientation will then

define azl, where

s _ e-jkrs

E 0 _4_rs z all E_ ;

The time dependent exponential, e j_t, is dropped in this section. This

same linearly polarized incident wave in the fli direction in general

produces a component in the scattered wave polarized in the es direction

also, E_. The relationship between E_ and the incident wave producing

it, E_ defines azl:

s e-jkrs
a21 E_

E_ - _41rrs2

The same process can be used to define azz and alz , where this

time the incident wave is assumed polarized linearly only in the ¢i

direction; this incident wave produces components polarized along each

of the directions 0s and _s in tne scattered wave.

-jkr s

s"

and

-jkr s
e

E__ j4_.rs 2 a22 E_

Since the scattering process is linear, superposition can be used

to express the total scattered field due to an incident wave with both

polarization components present. In matrix notation this relationship
becomes

l0



(3)
e-jkrs

4_rs z

all al2

a21

E6 e- jkr s E_

[AL]

" [
_ i

The aij are functions of the particular surface element, its
orientation, the wavelength of the incident (and reflected) waves, and

the incidence and scattering angles, Oi, es, and (hs. The subscript 1

refers to O and the subscript 2 refers to _p. The left-most subscript in

aij refers to the scattered field component which is produced, while

the right-most subscript refers to the incident field component under

conslde ration.

There are four elements of this scattering matrix [ A L]. Each

of these elements may be complex, in general. Therefore, there are

altogether seven independent quantities associated with each scattering

matrix: four magnitudes and three phase differences. (There are only

three independent phase angles because a constant phase angle can be

subtracted from each of the elements in the matrix and be absorbed by

an appropriate shift in the time origin, making one of the elements of

the matrix, all, for example, pure real.)

In the special case of back-scattering, where (hs = 270° and E)s

= 8i, it can be shown by the reciprocity theorem that alz = a2,. Thus

the number of independent quantities in the scattering matrix is reduced

to five. At any angles of incidence and scattering other than the case

of back scattering, i.e., bistatic scattering, no SUCh relationship exists

between a12 and a21, however, for an arbitrary surface.

The reason for the peculiar definition of the aij, in which the factor

I/J_-s was expressed separately, will be evident now when the expressions

for the scattering cross sections are examined. The scattering cross section

can be defined for any combination of incident and scattered polarization

states. Thus the, scattering cross section relating incident power linearly

polarized in the t)'i direction to scattered power linearly polarized in the U s

direction from the surface element dA at angles fli, as, _s is defined as

follow s:

4 r:P 4 r:rE l'
= '°s'¢s)-- =

11



The other scattering cross sections relating the ratio of power

present in each of the polarization states of the scattered wave to

those of the incident wave are similarly defined:

(4)

and

o-_o_, Os, _,s) = o-xx= Vaxll",

= Iz°_(°i, °s, '_s) = °_z rax_ ,

o-,o(oi,Os,%) = = ra  .l ,

°_(o i, Os, %) = O-zz=

Again, the left subscript refers to the direction of polarization of

the scattered wave, while the right subscript refers to the direction of

polarization of the incident wave producing that component in the scat-

tered wave.

One can define the scattering cross sections, which relate scat-

tered power of any desired polarization state to the incident power pro-

ducing it, of any other polarization state. For example, _RL(ei, es, Ss)

relates scattered power, right circularly polarized, to incident power,

left circularly polarized, which produces it. The formal definition is

°'RTJOi,Os,'_s) =
r/r  l

-7am.,I2

A scattering matrix relating a scattered field, specified in the

circular polarization states, to an incident field, also in the circular

states, has not yet been discussed or defined. However, it appears

that such a matrix would be of value, since, as seen above, the scattering

cross sections for the circular states are defined simply as the magnitudes

squared of the individual elements of such a matrix, in the same manner

as they were for polarization specified in the Cartesian or linear polariza-

tion representation. Such a matrix one could certainly measure for a

given surface element; however, since polarization specified in the cir-

cular representation is directly related to its specification in the Cartesian

representation, one would suspect that the elernents of the Cartesian or

linear scattering matrix, [AL] _ would somehow be related to the elements

of a circular scattering matrix, [Ac]. The exact relationship can be found

12



easily by using the linear-to-circular transformations of the last ,

section (Eq. (Z)). The matrix desired has the following definition:

(s)

S

E R

e-jkrs
aRR aRL

aL R aLL

- ° --*

I

l

EL

The scattering matrix previously discussed and defined is the

following:

7

e'jkrs

all a12

azl amz

i

however, using relationship of Eq. (Z), one has

S

E 8

i

E$

S

_i ER

S

EL

1
and

-I E_

i
E L

+

Substituting these last two relationships into the previous one

results in the following expression:

_E_] e -jkrs[Tc]" '

_ .sj

all a12

, •

IEj
i

_ _J

Now, premulttply this equation by [Tc] to give

+ The conjugate matrix must be used for the incident field because of

propagation radially inward toward the origin.

13



Z

e-jkrs

[To]

alz

azl a22

F .

From the above, one can see that the elements of the circular

scattering matrix of Eq. (5) are defined by

(6)

aRR aRL

aLR aLL

- [Tc]

ali alz

- .-TF
i Z

i azz

i 1

j_

The individual elements of the circular scattering matrix are

all + azz - J(alz -az_ an- azz + J(alz + azl)
aRL = 2 ; aRR = Z

all- azz - j(alz + azl) an + azz + j(azz - all)

aLL = 2 ; a LR = Z

From the first expression of Eq. (6) above, the inverse relationship,

giving the linear scattering elements in terms of the circular scattering

elements, can be found using matrix algebra: premultipl 7 the equation by

[Tc] "I and postmultlply it by [Tc_ •

(7)

_o

all a12

=[Tc]-

aRR aRL

aLR aLL

aR L +a RR+a L L +a LR

[Tc_ =

all = " =2 , al_

1

-j

1

._ aRR

i
aLR

1

aRi

aLL
i ,j

j (aRL-a RR+a LL-aLI_)

m

-/
_z

14



(7) azl = "j(aRL+aRR'aL-L -aL_),; azz = aRL-aRR-aLL+aLR

c ont. 2 2

From the relationships of Eq. (6) the circular scattering cross

sections will be determined in terms of the linear scattering matrix

elements.

°R.L [_RR]" I= = _ [all + a,z-j(ala - a,l)] [all + a,z - j(ala - a,l)]

1
= _ [all + azz - j(al2 - a,l)] [ all* + azz* + j(al2*- azl*)] ;

" _RL
i r"

=-_[ [all[ 2 + fazz[ 2 + [al;l 2 +laz!

*+ *+ 2Re{allazz*-alaaal*} +2Irn{all*a|_ +alla;1 az2 alz+aa2a,l*}] •

in like manner,

i j, I'_+ I f" "O-RR=[aRL[' ='_'-[[all + Jazz a12 + lazll

* a_2*)+ * * *}],+ 2Re{a12a,l -an 21re{at2 all + _i al1+alza2a *+azla_2

_LI_= JaRLIz 1 lall[Z z--Z[ + la,_f + la,,l _+ la_,['

and

$ $ *
+ 2Re(azz azl -all az z*) + 2Im{azz an*+ az, all +azz alz +azz an*J] ,

+ 2Re{anazz -alzazl*} + 2I.m{alz*an +a12* aaz*} ]an +az, an*+aal

In the above equation, the expression Re{ } has the meaning "the

real part of { }, " and the expression ira{ } has the meaning "the imaginary

part of { }". The above equations are rewritten below with the following

15



substitutions: ]all Iz _11, Jazz[z lalzl2= = 0-22s . = 0"12,

_z_, and using the fact that L_{x*y} = _{-xy*} .
and la ,F

i • ,}
(8) O'RL = _[ 0"11+ o'zz+0"12+0-z!+ 2Re{a11 azz - alz azl

+ Zlm{aaa21 -aual2 +azzazl - a2zalz*}] ,

O'RR=¼[ * *}o-ll+ °'2Z+ 0-II + °'21 - 2Re{all a2z -alz all

, * , *+ 2L'n alia21 + alla12 - ai2a2! - a_2a12 )] ,

1 ,
7[ 0"11+ _22 +0"Iz+0"21 - ZRe{alla22 - al_ a21*}0"LL-

and

-21m{auazI + a11a12 az_azl - azza12*}],

1 , ,}O'LR= _[_11+ _rzz + o-lz + 0_21+ ZRe{ailazz - alzazl

- ZIrn{anazl -analz + a22azl - az2alz*}]

The specification of the linear scattering cross sections in terms

of the circular matrix elements may be done in a manner identical to

that used above to derive Eq. (8), this time using relations of Eq. (7}.

The results are given below.

{9}
1

a'II : 4-[O'RL+ _LR + _RR + O'LL + ZRe{aRLaL; + aRRaLL*}

+ ZRe{aRLaRR +aRLaLL+aLRaRR + aURaLg }] ,

1

_Iz = _-[ _RL + _LR + O'RR + _LL - ZRe{aRLaLR * + aRR aLL*}

+ ZRe{-aRLaRR*+ aRLaLL* + aLRaRR $ - aLRaLL*}] ,
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L

(9)
cont.

and

1 +¢ _ 2Re{aRLaLj+ aRRaL: }• zl = Z[¢RL+ _LR RR+ ¢LL

- 2Re{-aRLaRR aRLaLL + aLRaRR - aLRaLL ] ,

1 ,

Czz : 4[¢RL+¢LR+¢RR+¢LL + 2Re{aRLaLR + aRRaLL #}

- 2R {aRLaR+aRL L:+., RaR + aLRaLL*}]

For the special case of back-scattering, where alz = azl and _lz

= ¢zl, Eq. (6) reveals that aRL = aLR" In this case, the relationships

of Eq. (8) become

i 2
(I0) °-RL: _'[Grll + _zz + Re{allazz }] •

1 #} + 41rn{allalz$
crRR-4[_1l + °-ZZ÷ 4Crlz - ZRe{allazz - am axz_} ] •

and

I * azz alz*}]
_LL = -_[o-ii+ 0-zz ÷ 4_lz - 2Re {allazz*} - 4Im{analz -

1
0LR = _[$11 + _zz + 2Re{alla2z*}] •

The main point of interest evident from the above equations is that

_RL = _LRfor the case of back-scattering, just as _Iz = _zl in this case.

The expressions of Eq. (9) may be simplified in this case also to the

following:

1 _ ZRe{aRRaLJ )(11) (ri1 = _[4_RL + _RR + LL +

÷ 4Re{aRLaRR $ + aRLaL:} ],

l _ 2Re{aRRaLj } ]vlz = _ [ eRR + eLL
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(Ii)

C ont.

and

1 - ZRe{a *}]°'zl = 4" [ °'RR + °'LL RR a LL '

ca,=_[40"RL+ eRR + eLL + 2Re{aRRaLL}

- 4Re{aRLaRd + aRLaLd}] •

The significant point to note about all of the above transformations

is that the relationship between the linear scattering matrix, [AL], and

the circular scattering matrix, [Ac], is a linear transformation con-

sisting of a matrix premulttplication and matrix postmultiplication, as

seen in Eqs. (6) and (7). This means that the elements of [AL] can be

expressed solely in terms of the elements of [Ac] , and conversely.

No such relationship exists between the circular scattering cross sections

and the linear ones, however. This means that the circular scattering

cross sections can never be expressed or found solely from a knowledge

of the linear scattering cross sections, and conversely. The reason for

this is apparent; the scattering matrices, [AL] and [Ac], each contain

seven independent pieces of information about the polarization - trans-

forming properties of the surface. These seven pieces of information

are all needed to completely characterize the polarization - transforming

properties of the surface. However, the four scattering cross sections

for each case contain only four pieces of information; they carry no in-
formation about the three independent phase differences between the

elements of the scattering matrices. Therefore they do not completely
characterize the polarization-transforming properties of a surface in

themselves, and one needs more information about the phase differences

of the matrix elements in order to relate the circular scattering cross
sections to the linear ones, and conversely.

The important relationships discussed in this section are the

definitions of the linear and circular scattering matrices of a surface_

given in Eqs. (3) and (5). The relationship between the elements of the

scattering matrix and the scattering cross sections of a surface are

given in Eq. (4). The transformations between the elements of the Cir-

cular scattering matrix and the linear scattering matrix are given in

Eqs. (6) and (7). The relationships between the circular scattering cross

sections and the linear cross sections are given in Eq. (8), while the

converse relationships are given in Eq. (9). Then these scattering cross

section relationships are specialized for the case of back-scattering, and

18



these results are seen in Eqs. (10) and (11). In the case of back-

scattering, it was seen that a12 = a21, _lz = _21, and aRL = aLR _ _RL =
g'LR" (See refs. 1,Z, and 6.)

Ill. ANTENNA VECTOR HEIGHT METHOD

FOR SPECIFICATION OF RECEPTION

AND TRANSMISSION OF POLARIZED

WAVES

There are severalmethods of specifying the transmitted electric

field from an antenna and representing its polarization, but the concept
of vector height is one of the most useful[5,8,10]. Its use is restricted

primarily to the far-zone region only) where the radial component of

the electric field becomes negligibleo In this case the components of

_he electric field can be resolved into transverse components along the
0 and _ directions, where O and _ are the polar and azimuthal aagles in

spherical polar coordinates, and band _ are the unit vectors in the

directions of increasing 0 and _ and hence perpendicular to the radial

unit vector and direction of propagation. The antenna is assumed to be

located at the origin. The relationship giving the far-zone electric field

in terms of the vector height for any antenna located at the origin is the

following (see Fig. 3):

M

-- Zolh -jkr
(12) E = j 2k r

where

Z o = intrinsic impedance of free space for plane waves (120_2),

r = radial distance from antenna at the origin,

I = terminal current at the antenna,

k = wavelength, and

h = hi0, @) - vector height of the antenna.

The above definition illustrates that the only parameter which depends

upon the particular antenna chosen is ]_, the vector height. The quantities

I and k are considered input variables to the antenna capable of being con-

trolled by the user. Vector height, h, may be a function of k also.

19



Point Of Measurement P_, h(i_)

z

• °
Arbitary Antenna -_

At Origin _/ I

X

_y

Fig. 3. Vector height of antenna at point P.

The vector height, _, can be plotted as a function of 8 and qb in

much the same manner as the _ain function of an antenna, except that

in this case the components of h specify an amplitude and phase, and

not merely an intensity. There are two components of h (i.e., h 0

and h_) and each is, in general, a function of 8 and @; and each is, in

general, complex, having an amplitude and a phase angle. While the

gain function for an antenna is easily measured, since intensity is an

easily measurable quantity, the vector height of an antenna is not easily

measurable from any practical experiment, since measurement of the

vector height requires observing and preserving the phase difference

between the components of h. Therefore in most cases it is easiest to

calculate the vector height theoretically for a particular antenna rather

than attempt to measure it, even though the results may be highly

idealized.

As examples, the theoretical formulas for the vector height of

three particular simple antennas are stated here[ 13]:

(a) for a short linear element of length 2L centered at the origin

and oriented along the polar, or z-axis,

- ^h= L sinO- + O" @ ;

ZO



(b) for a half-wave dipole antenna parallel to the z-axis and

centered at the origin,

_ k cos (_ cos O)
h = --- _+ O-_ ; and

sin 0

(c) for a small loop of area S with its axis along the z-axis and

centered at the origin,

-- ZwS
h-- 0"_- j-_-

A
sin 0.0 .

(Note: throughout this section it is assumed all voltages, currents,

and fields are sinusoidal with respect to time, and therefore the factor

ejc°t has been omitted from equations. )

Instead of representing the polarized electric field and vector

height in vector form it is more convenient in many instances to repre-

sent them in matrix form as follows:

- [ElE-- =

tEI - j Zoie-jkr
°

[h] - jz°Ie'jkr
2kr

Although h 0 and h_ may be complex in general, it is always possible

to make one of them, say ho_ pure real by subtracting the proper con-

stant angle from each component and absorbing it in a shift in the time

origin. Thus,

(14) h8= Ihoi ; h,--ih,[ e •

In order to extend the application of the vector height concept to

the reception of elliptically polarized waves by an antenna of a particular

h_ consider a plane wave incident from angles 0 i and ¢i upon such an antenna

located at the coordinate origin. The wave has only transverse components

and therefore may be expressed as
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--i Ikrl
E me

Here, rl is the radial distance measured along the direction of
I

propagation. As before, E 8 can be made pure real, i.e.,

The minus sign was used here in contrast to the plus sign used

in the definition of phase difference in ECl. (14). The reason for this

convention is so that when 81 and 8_ lie in the same quadrant, Ecls.

(14) and (15) represent the same direction of rotation of the electric

field vector to an observer looking in the direction from which the waves

are coming. The difference in sign therefore results because in Eel.

(14) for the vector height o£ a transmitted wave, the direction of propa-

gation is taken to be away from the antenna; in ECl. (15) the wave is pro-

pagating toward the antenna.

In obtaining the open-clrcult terminal voltage produced by the

incoming wave upon the antenna located at the coordinate origin, the

8 and _bcomponents of the incident wave are considered separately and

the resulting voltages are then added to give the total voltage. This is

possible because the reception and transmission by the antenna is as-

surned to be a linear process, and therefore superpositlon may be appliedo

By the Reciprocity Theorem[ 14], the open-circuit voltage produced

across the terminals of the antenna by the 8 component of the incident

wave acting alone is given by

V' = hsEi8-- lhsl IE_I •

Similarly, the voltage at the terminals resulting from the _b com-

ponent of the incident wave acting alone is given by

Ih,1lEVIe
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Therefore, by superposltion, the total open-circuit terminal

voltage is given by

( 61 v--v'+v":hoE +h,E;- -[hl Ei]-h.E

The above equation illustrates the different ways of representing

the reception, t.e., by a sum of algebra products, by matrix product,

and by a vector dot product; all say exactly the same thing. The super-

script "T" above a matrix refers to the transpose of the matrix, e.g.,

the transpose of the column matrix of this case is a row matrix. As

seen previously and as will be more evident later, the matrix method

proves to be the most convenient, especially when considering the

reception of scattered waves.

In this section, the concept of vector height of an antenna was

discussed, and the polarized electric field transmitted by an antenna

in terms of its vector height and terminal currentwas given in Eq. (12).

Several examples of vector heights for particular simple antennas were

cited in the relations of Eq. (13). The extension of the vector height of

an antenna to its reception of a general elliptically polarized wave was

discussed and the terminal voltage of the receiving antenna is given in

Eq. (16).

IV. TRANSMISSION, SCAT fJERING, AND

RECEPTION OF ELLIPTICALLY

POLARIZED WAVES

In the previous sections, the representation, transmission, scat-

tering, and reception of elliptically polarized radiation wave were all

considered separately. In this section, these concepts will be combined;

an expression for the voltage (and power) induced in the receiving antenna

after transmission by a separate antenna and after scattering by an

arbitrary surface will be found, as a function of the current at the

terminals of the transmitting antenna. This voltage will be a function

of the polarization properties (vector height) of the antennas and their

particular orientation about the lines of propagation to the surface, r t

and r r. It wLU also be a function on the scattering properties of the sur-

face (the scattering matrix elements) and the orientation of this element

along with the directions of incidence and scattering from the surface to

the transmitting and receiving antenna (see Fig. 4). Finally, it is a function

of the frequency of the radiation.
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r t 8i 8s I

dA_ J ,,

.1i
l

Fig. 4. Bistatic scattering

It is assumed that the medium is homogeneous and isotropic, and

that the distances from antennas to the surface are large enough so that

the far-zone approximations are valid. For the present, it is assumed

that the surface element and antennas are stationary with respect to one

anothe r.

The motivation for such an analysis seems quite evident. Given

all the properties of the antennas, their orientation, and the properties

of the scattering surface for a given frequency, find the voltage induced

in the receiving antenna for a given current at the transmitting antenna

termlnals. However, the main purpose of these studies is somewhat the

converse of the above statement; i.e., given the properties of the antennas

and their orientation, what properties of the surface (involving the scatter-

ing matrix elements) can be determined from measurement of the receiving

antenna voltage (or power) for a given transmitting antenna current and

frequency. For this purpose, it is convenient to choose the simplest pos-

sible antennas (having easily describable vector heights) in the measure-

ments, so that mathematical determination is not too burdensome. There-

fore, llnear-favoring antennas will be considered first; such an antenna

which transmits a linearly polarized wave is the half-wave dipole antenna,

discussed in Section _I; its vector height is given _u the second expression

of Eq. (13). Then, circular-favoring antennas will be employed also be-

cause linear antennas alone cannot describe completely the surface

properties.
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Consider now that the transmitting antenna is a half-wave dipole

aligned with its axis pointing toward the surface (at the coordinate

origin) along rt, and so that it lies in the plane of incidence, the y-z

plane. Then let the receiving antenna be aligned with its axis pointing

toward the surface along rr, and so that it is rotated about its axis by

an angle c: from the plane of scattering (a is positive for rotation in a

clockwise direction when looking toward the antenna from the surface

element).

The transmitting antenna vector height,

nate system shown above is,

expressed in the coordi-

A

where the upper element refers to the component in the + 8 i direction.
The vector height for the receiving antenna is

co:]sin

where the upper element refers to the component along the +_s direction

and the lower element refers to the +_s component.

Therefore, using the scattering matrix concept, one can immedi-

ately write down the value of the open-circuit terminal voltage at the

receiving antenna:

ZoI

(17) Vv=j Z-_rt [hr]T [A ] [ht]

Zol . k k 1 w

= j 2krt _ • w 4j-_rr 2 tcos ct -sin CLI

V v
Zolk

=j
4rtrs_S/z

(all cos a - azl sin a) .
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Now, assume that the transmitting antenna is rotated about its

axis by an angle w/Z so that its vector height has the following form:

In this case the voltage at the receiving antenna is given by

(18)
jZolk

Vh - 4rrrs_Slz (azz cos _ - aaz sin e).

In these two expressions, Eqs. (17) and (18), are found all the

four elements of the scattering matrix. It would appear at first glance

that from an exact knowledge of Vv , Vh, and I for a set of measurements

at several values of a, one could exactly determine all, all, all, and azz.

However, in practice this involves an exact knowledge of the magnitude

of Vv, Vh, and _ and also an exact measure of the phase differences

between I and Vv, Vh. It is the latter information which is difficult to

obtain accurately in practice. Therefore it is generally more conven-

ient to measure magnitude information, or power. Such "power", or

intensity of the voltage, is defined as follows:

P-[VI 2 *=V" V -

Thus the absolute value squared of equations (17) and (18) gives

an expression for the power received in terms of transmitted power and

angle of rotation of the receiving antenna, _, at both transmitting

antenna positions.

(19)
Pv = V v" Vv* = rtrsTrS/z J

(all cos _ - azlsin_)(all $Cos Q - aal $

Pv

2

lit' (la ,I' cosz= - 2Rela. a,,*}

COS (_sin CL + lazll I slna (_),

26
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or

Zo k _ z

Pv --\4rtrs¢,1,/ I_t' (la, lf'Cos' (1

- 21anl I_,.l _os _, cos (1sin _ + la,,l' sin' (1).

where 51 = phase difference between all and azl.

, ( ),(20) Ph = Vh'Vh =k4rtrses/z [I[Z

Ph

(a12 cos (I - a,, sin (1)(alz _ cos (I - az,

=( ZoX )'_ 4rtrs,rW z II]a ( lal, I' cos' (1

- ZRe (a,, a,,*) cos (1sin (1 + la..l' sin' (1),

sin (1),

or

• =[ ZoX )"ph \4rtrs¢"' l,l' CIal,I'cos'
(1

-21a,,lla,,l cos 5, cos _ s_n (1 + laul' sin z (1) ,

where 5 z • phase difference between al, and az, .

It is apparent from Eq. (19) that after three measurements of power

at properly chosen receiving antenna angle (e. g., cL= 0, w/Z, and ¢/4), the

quantities lall], ]azll, and cos 51 can be determined. After three similar

measmrements with the transmitting antenna horizontal and by use of Eq.

(Z0), D-4, quantities lalzl, [azz[, and cos 5, can be determined.

In addition, it is interestin_ to note the form of Eqs. (19) and (20); if
one considers the quantities lanJ, lazl[, and cos 51 as parameters of a

given surface and plots Pn as a function of (1, rotation of the receiving

antenna, the polar plot is a variation of a familiar figure, the ellipse.

The general equation for an ellipse centered at the origin and with major

axes, in general, inclined is
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x* y2 Zxy cos 5
A" sin z 5 + B z sinz 5 - ABsin a 8 - I.

Upon conversion to polar coordinates this becomes

r2 cos a (1 rz sinz (1 Zr z cos c_ sin (I cos 5
A" sin _ 5 + - - 1B a sin_ 5 AB sin" 5 '

or

)cos= " slnz 5
Z ( 1(1

\AB sin* 5
cos

+ (1)B z sinz 5 sinZ (1 "

Now if one substitutes

and

1

la**]- A sin 5

1
I i

la_, - B sin 5

1

r-T = Pv = IVv Iz

one arrives at Eq. (19). Therefore, if one were to take the inverse of

the square root of Pv as a function of (1, he would obtain an ellipse.

Several of these figures are shown for various values of

and cos 51

The

have been

Jail ]

lazl I

in Fig. 5.

following quantities in the scattering matrix for the surface

determined from power measurements thus far, viz., [an[,
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Ta,lt. ta, I. 1a.,l, cos andcos 6,. remainingproblemis to
determine the signs of angles 61 and 62 and the remaining independent

phase difference in the scattering matrix. The quantities cos 61 and

cos 6a do not uniquely determine 61 and 52 . The remaining problem

at first seems trivial: make a few more measurements at different

transmitting antenna angles than 0 and _/2. However, this problem,

upon investigation, is more complex than it seems. Such measurements

yield involved expressions containing the remaining phase angle in

question, but there is still an ambiguity in the sign of various phase

angles. There is some question as to whether all of these independent

phase differences and their proper phase angles can be determined by

transmitting and receiving strictly linear polarization, as previously

discussed. If such a determination is possible, it is, at best, an

involved process.

However, if one employs circularly polarized antennas, these

ambiguities can be resolved quickly. There are many possible schemes

involving circularly polarizing antennas which can do the job, and the

schemes chosen here are by no means the only possible one. However,

they are simple, both physically and in the interpretation of the results.

Assume that from the previously described linear antennas, cos 61 and

cos 62 have been determined along with the four magnitudes of the

scattering matrix elements. Left to be determined first are sin 61 and

sin _a, which then uniquely determine 6i and 62 . Finally, 5a must be

uniquely determined. In the next paragraph, a simple scheme for find-

ing sin 61 and sin 62 will be described.

In this system, a linear polarizing transmitting antenna, along

with a circular polarizing receiving antenna, will be used in measurement

of power scattered from a surface. For generality, assume that the trans-

mitting antenna is rotatable by an angle c_ from _i in a clockwise direction

when looking toward the surface along the direction of propagation of the

incident wave; both antenna vector heights are normalized and given

below.

Fc°sI Ill= ; hr =
Lsin

The top sign on the lower element of the receiving antenna indicates that

the wave emitted by this antenna, if transmitting, is left circular; the

bottom sign indicates right circular. The voltage received, therefore,

is given by the following:
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VL C : k[hr]T[a][ht] = k[ancosa ÷alzsina ±Jazlcos_ ±ja_l_sin(%].

Therefore the power received is proportional to the voltage squared

and is given below.

PLC = VLC • V_C = K{an an*cos z (% + alza,2* sln* (%

+ _-_lala cos (% sin c_ + alzall cos (% sin (%

+ azla2! cos 2 (% + azaazz sin 2 (%

+ a21a22 cos (% sin (% + azz a2l + cos (% sin Q

janazl cos z a .7,.ja,z az, cos c_ sin c_

jallazz cos (% sin (% _t jai2az2 s_n (%

+__ja_lal cos z (% +_ jazl a,z cos (% sin (%

± anaz, cos (% sin a + ja,2a,_ sin (%} .

The angles as defined in Eq. (24) are used to simplify the above

expression.

(zl) PLC:K{[ ra,,.I"+ la,.,I'-lcos"(%+[ la_,r_+ la,,lq sln"(%

+z[la,.,.lla,,rcos<%-_',.)+la,_.lla,,Icos<%-_,)J.=os,=,sin(%

Zlal,IJa_Isinhcos (%V Zlazzllaz,lsin_,, sin z (%

-r-z[la,.,.l[a., Isin % + Zlanlla,,lsin (_,,.+e,,_._%)] cos (%sin (%}.

Although the above expression for received power is not simple

mathematically as it stands, it can be simplified by choosing (% judiciously.

If (% - 0 (transmitting antenna vertical), then

(2Z) PLC : K( la,.,.l_÷ la,,.l"_ Zla,.,Ila,.,rsln D,} ;
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if CL = w/2 (transmitting antenna horizontal), then

(z3) PLC--K{ la,_l" + la_,l__ 21a,_tla,,lsin _}.

The above two expressions are quite simple and readily yield

sin 5, and sin 52 after the four magnitudes are known. The upper

sign in the last term refers to a receiving antenna which itself trans-

mits right circular (and therefore best receives left circular) polari-

zation.

An alternative scheme can be used when the transmitting antenna

is circular and the receiving antenna is linear. The angle c_ here denotes

clockwise rotation of the receiving antenna from _s (vertical} when look-

tng toward the antenna from the surface in the direction of propagation;

the upper sign on the lower element of the transmitting antenna vector

height again represents an antenxla which transmits a left circular

wave. The results are merely stated below.

gt = ; hr: L_sin '

"'" PCL = K{ [ lal, l 2 ÷la,,l'-]cos'_ ÷ [ la,,P+ laz21'-] sin' a

- z[ ta,,lla,.,Icos _, + la,,lla,,Icos _,_]cos_ sin

+ zla,,lla,,lsi_(%-_,)cos' _ +_zla,,lla,,lsin(r_-_,)stn'

[Zla,,lla,,_lsin(_-_,_-_,) + ala,,lla,,lsin _,]cos (_sin el}

For a : 0

2PCL = K(I_,,I'- + la,, * zla,,Ila,_lsin(%-_,)} ;

for a = w/2

Pc,, : K( la,,.l" + la_,.l_± zla,2[Ia,_21sin(%-_,)} •
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It is not immediately obvious whether the above two expressions

can uniquely determine 5_ if all the other quantities are known; it

might turn out that each of these two expressions yields the same two

choices for 53, which does not eliminate the ambiguity.

There is one remaining sct_eme to be investigated which will

definitely clear up the ambiguity in sign of 53 (and also can be used

as an alternative to the above method for resolving the ambiguity in

51 and 52). This involves the use of circular polarizing antennas for

both transmitting and receiving. In this case it is easier to describe

polarization states and the scattering matrix in terms of the circular

representation. Thus, for antennas_ both of which transmit right

circular, we have

h't= ;_r= ; [a]=

L_LR aLL_.I

Then the voltage at the receiving antenna can be written as

= = k I aRK

LaT,RaLLJ

and

*=k 2Illzl_Rl 2 kZ III'o-ERPCRR = VCR R- VCR R = .

In like manner, a left circular transmitting antenna and right

circular receiving antenna yield a power return

=k'-[II _PCRL URL

The other combinations of circular antennas give similar results.

The circular scattering cross sections can then be expressed in terms

of the linear scattering matrix elements, as given in Eq. (8). At this

point it is convenient to formally define and express the angles between

all of the elements of the scattering matrix.
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and

- • - = 51 - 5s

and

"/__lt = 51+5z-5_

; Re{alzaz, #} = [ai2[]a_l[cos _,

; Re(a,,a_*}= [a_,lJa_,[cos(_-%-_,),

; Irn{alIaz,*} = -]a,ll]a21[ sin 51 ;

; Irn{alla,2*} -- + Ialll[al_lsin(_-Sl).

*}; Irn{a22a,, = . [a2,1[a,l[sin (_33-62),

; Im{a22alz _'} = la_.2J[al_[sin 62.

Using the above relations, the power received by the various com-

binations of the circular antennas can be written as follows:

(25) PCR L + r ,,r +- I 2 _-

+ 21a,,[ra_,_[cos(%-_-_,)- 21a,,lla,_,lcos 5,

-2 I,,_,IIa_Ysin(_,-5,) - ;'.la_lla_,Isi_(_-%1

.7. lax, lla,.xl_in 6, _ Zla,,_l/axzlsin _,].

RR = /'k'_k_)z
PC

-2 la11

+ 2 I all

-2 Jail

rrl'rt ,,r '-+ la_l'- + la,,l" + la_,l'

Ila,,lcos<_-%-_,) + _.la,,.rla,xlcos%

Ilal,[sin(_)3-_l)+ Zla22[[a,,Isin(r_-o,)

II_,.,lsin _, - zla,,.lla,,lsin 0,],

PC LL la,,l_÷ la_l_÷ I.,_I2+ la_,l2

Icos(_-%-5,) + _-la,,_ll_,_,lcos5,

- zlaa Ila,_lsin(%-_,)- Zla,_,_Ila,,lsin(%-%)

+ 7-1a-Ila,_,[sin _, + Zla,,lla,,l si_ _,_] ,
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and

Ikl21112[lan[z + [anlZ + ]a_I2 + lazz]z
PCLR=

\-/

+ 2 2ra, lla,,rco 

+ ztanlla,,t_in _, + 2ia,2Ita,,Tsi_ _,].

The right-most subscript in the above expressions for received

power refers to the polarization state of the transmitting antenna, while

the middle subscript refers to the polarization state of the receiving

antenna, both being either right or left circular. Upon adding the first

equation to the second, one obtains

(26) _z 12pCRL+ pCRR : Z II[ z[la,,Iz+ la,2[z+ la,,]"+ la,,

: Zlanlla_,lsin5, - Zla,_lla,,lsln_,1;

upon adding the first equation to the third, one obtains

(27) PCRL + PCL L
x /

- 2 rallllal, lsin(_3-_l) - 2 Ia,2llaz, I stn(_,-_, )];

and upon adding the first equation to the fourth, one obtains

(z8) Pc
RL +PCLR=Z III2[lan + laz21z+ laIzI'+ la_lz

+ zIanIlaz21cos(_-sz-_,) - 21a,211a lcos_l.

.Assuming that ]alll, lad21, l al21, ]a__ll, cos _l, and cos 5, have

already been determined from power measurements previously described

involving only linear antennas, the sign ambiguity can be resolved in 81

and 5__ by using Eq. (26). Then Eq. (27) would result in a choice of two
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possible values for 53, while Eq. ,Z8) would definitely eliminate one

of these two possibilities. This scheme might prove simpler and more

straightforward for finding the angles than the one involving a com-

bination of linear and circular antennas.

In this section, the complete representation of the transmission,

scattering, and reception of a polarized wave is discussed and expressed

in matrix form. Then the application of such a representation to the

determination of the scattering matrix elements of an unknown surface

by measurements with antennas of known characteristics is discussed.

A practical method of determination of these elements involving measure-

ment of power or receiving antenna voltage magnitude is explored using

linear and circular polarizing antennas. The relationships for power at

the receiving antenna for the linear cases are given in Eqs. (19) and (Z0).

Rotation of the receiving antenna is discussed and the power patterns are

studied. Ambiguities in signs of the phase differences of the scattering

matrix elements determined from power measurements are encountered

and resolved simply by employing circular polarizing antennas. The

results of this section were derived for surfaces stationary with respect

to the antennas. Each element of the scattering matrix is a function

of the surface position, angles of incidence and scattering, and frequency

of the radiation.

Vo INTRODUCTION OF THE

STOKES PARAMETERS

Thus far, the various methods of representation of a polarized

wave (i. e., linear or Cartesian orthogonal states and the circular

orthogonal states) have all had one point in common, i. eo, they inher-

ently involved complex elements in the description of the polarized

fields, antenna vector heightsj and scattering matrix elements. As

briefly mentioned, at high frequencies phase difference information

is very difficult to measure. On the other hand, intensity or magnitude

measurements can generally be made wifhout much difficulty. This is

especially true with light waves, where intensity is quite easy to obtain

experimentally; but phase differences (eo g., phase difference between

the source and the point of reception) are impossible to obtain since

many frequencies are present. (This is not to say that the effects of

phase differences are not important, since many experiments in light

are based upon a shift in phase, such as tnteference experiments. ) In

the previous section, it was mentioned that practical measurements of

the scattering matrix elements for an arbitrary surface involved mea-

surements in receiving voltage magnitude or intensity instead of phase
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differences. All this suggests the possibility of finding another method

of representing polarized waves employing pure real elements• since

power measurements involve only real physical quantities.

One such method of representation of polarized waves, involving

only real elements, is the representation by the Stokes parameters[3,

4, 11 ]. There are several demands upon such a system involving pure

real numbers:

(1) They must contain a complete description of the polarization

properties of a wave.

(2) Since it was shown in Section I that any eUiptically polarized

wave contained essentially three independent pieces of information when

it is completely polarized, any new method involving real numbers

(even though there may be more than three elements) will contain only

three independent elements; therefore there must exist dependency

relationships among the remaining elements.

(3) Such a method of representation using pure real numbers

must be invariant under a change in the orthogonal representation of

the same wave (i. e. • as seen previously, any generally elltpticall 7

polarized wave can be specified using either linear or circular polar-

ization states; the new method using real numbers must be the same

for the same wave, regardless of whether one started from the circular

representation or the linear representation).

This latter property of invariance can be dismissed at this point;

it has already been indicated (shown in detail for the circular states)

that there exists a one-to-one transformation from the many representa-

tion states on the Poincare sphere to the Cartesian• or linear states.

Since such a transformation is possible• any wave can be specified in

linear polarization states and the new system can be developed from

these linear states; the implication is that such a representation is the

same regardless of whether the wave was actually represented in linear

states or not.

At this point, the Stokes parameters for any polarized wave will

be developed by proceeding from an established physical quantityB i. e. •

the vector height of an antenna. Consider a transmitting antenna of

arbitrary vector height [ht] and a receiving antenna of arbitrary vector

height [hr]. These vector heights are directly proportional to the polar-

ization of the wave which these antennas would transmit. An expression

will be sought for the power at the receiving antenna due to the transmitted
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wave where there exists no scattering of the transmitted wave. Let

the vector heights be specified, using the linear method of representation,

choosing linear vectors along_and _ and the angular unit vectors in

spherical polar coordinates, and arranging the system so that propaga-

tion from transmitter to receiver takes place along a radius from the

origin. Except for a constant (which shall be omitted throughout the

discussion), the normalized power at the receiver terminals is given

by

F -]

L #j

r t r t r* t* r* t*

- (h 8h 8+ hch¢)(h e h 8 + he he ) .

The representation desired is one in which the polarization pro-

perties of the transmitting antenna can be represented by pure real

numbers; and likewise for the receiving antenna. The power received

should be expressible as some matrix product between these sets of

real numbers:

p = h_r*_t,t* r t r@ h_)* + r t r* t* r* t*n 8 n8n 8 + h_h_h 8 h 8h 8h_ he + h_h¢ hSh_ .

If one adds and subtracts the same terms to the above equation

and re-arranges them, he can arrive at the following expression:

p -"

1 1 r r, 1 r
-_ h_r* _t_t* h t h t* + . r*, t. t*•"o "'s"o+Thehe ¢ ¢ _hcn¢ _ono

1 1 r h_*+ _ h_h_* h tht* .r*.t"'O"O - 2he he h_b

1 . r* t t* I r* r t* t

+ _ h_ h e + he h ehe h@ _h_ h 0

1 r r* t t*

- _-hqbh_ h Oh 0

1 r$ r t* t
+'_ho h_ ho h_b

1 r h r* h t h_*+yh¢ ¢

i r t ht *+ _ he h_* he

1 r t*
+-zho h,

1 r r* t h%* 1 r* r t* t 1. r* r t* t 1 r r* t t*
+_h,h O h, -_-h¢ hol _ ho-_h 0 hchoh ¢ +-_hoh¢ hoh¢ .

The extra terms were added so that each line of the last expression

could be factored as follows:
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1 r r_ r r_ t t_ t t_
p=_(h eh e +hch¢)(h e h e +hch¢ )

+ 1 r r_ r r_ t t_ t
(h e h e - he he )(h e h8 - h_ ht¢*)

t_
1 r r_ r r_ t t_ _h, )+'_(hch 8 +hsh,)(h@he +

1 r r t_ t t t_
Z (h_*h_ hchs_(h , he he •-- _ . h e )

In matrix notation, this expression can be written as below:

(Zg)

I

hoh_'+h_h _. h_h_" _ ') r r" r r" r r" r r"r l_h 8 +h 8h_ h_h e -h eh_
l D ---- s t p

F
h t ,.t**.-t t$"'O *n@ h@

ht _t s . t hts
6"'0 -nq_ ?

t t $._t ts
h_ h 9 *n 0 h_

_r

ht _t$ _t h _
_-e--O

or

(30)

r.... , ...... r r $ r r _' '_

w I _ ' '

, _ ?r U J ,

_r
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At this point, it is convenient to re-define the above matrix

elements as Stokes parameters:

ono v

, t.t*

r - - %%

h;' z 14! z h_*- "t't*, _ he,%
h t = =

2Re{h;h_*} r r*h,h0 +h_G*

h_ -_ ZRe{h_h_*} h_h_* + h_h_*

and

2Im{h_h_*} . r_r* r r*
h_ • = hq_no - h0hq_

_- jqr

2 Irn{h_h_*} _.t _t* htl_ *
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Therefore, the power received may be expressed in terms of

these newly defined Stokes parameters:

l-hl-
' r ' h_

(3Z) P- h_h_ h3 h_ ht •t I

hX
.

These Stokes parameters have the following properties, evident

from the above expressions:

(1) The elements have been separated into two matrices; each

represents the polarization properties of the wave which would be trans-

mitted from that antenna. Each element of a matrix is given in terms

of combinations of the components of the vector height of that antenna.

(2) The product of two such matrices represents received power,

whereas the product of two vector height matrices represents a complex

received voltage.

(3) Each Stokes parameter is pure real; this is easily seen from

the form of the first definition of these quantities in Eq. (31).

(4) There are four elements in each matrix representing the

polarization state of a wave transmitted from that antenna; since there

are only three independent pieces of information present in any com-

pletely polarized wave• these four elements are not independent. There

exists one dependency relationship between the Stokes parameters.

In order to discover the dependency relationship between the

Stokes parameters and gain a physical interpretation of this dependency,

assume that the receiving antenna is identical with the transmitting

antenna and oriented so that it receives all the power possible from

the transmitter (i. e.,

r t h_ h_ r t r t r t h_h 8 = h • = ; .'. hl = hx , hz = hz • h3 = hs , = ).

From basic considerations, the power received in such a case is
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p= [[hr]T[ht] ]2

t t t t[z= heh e + hc_hc_

t

h8

The right-most side of this equation is evident from the definition

of h t . NowB start with Eq. (32) and find the power received in this

same case when using the Stokes parameters:

p _-.

h_,
h_

ht

Equating these two expressions for power received yields the

following relationship:

(33) Z(hl = + + ,

.'.(ht I'-Cht I'+ Iht)' +I_)'

This above relationship is valid not only for the transmitting antenna,

but for any completely polarized wave represented by the Stokes para-

meters. This result may be easily verified in general by substituting

into it the definitions of the Stokes parameters, Eq. (31), and carrying

out the indicated algebra.

In this section, a physical motivation for the definition of pure real

elements to represent a polarized wave (the Stokes parameters) was

first provided. Then these parameters were defined as matrix elements

related to the vector height of (or wave transmitted by) an antenna.

These parameters were defined in this manner so that it would be obvious

that the entire process of transmission and reception of the power of a

wave can be represented by matrix multiplication of these pure real Stokes

parameters, just as the transmission and reception of tne complex voltage

of a wave can be represented by matrix multiplication of the complex vec-

tor height of the antennas. The definitions of the Stokes parameters thus
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developed are given in Eq. (31), and the matrix multiplication repre-

senting transmission and reception of power are given in Eq. (32).

Since there were four real Stokes parameters (instead of three) repre-

senting the polarization of a wave, it was noted that there existed one

dependency relationship between the parameters; this was developed

and is given in Eq. (33).

VI. THE SCATTERING MATRIX FOR

THE STOKES PARAMETERS

In the previous section it was shown that the expression for the

power received by an antenna coming from an elliptically polarized

wave propagating directly from the transmitting antenna could be re-

presented in two forms; one employs the vector height matrices intro-

duced in Section HI and the other employs the newly defined Stokes

parameter matrices, which are themselves functions of the vector

heights. The two representations are repeated below:

P= kI[hr]T[ht]l z ;

[h r] and [ht] are two-by-two complex matrices, vector heights of

transmlttingand receiving antennas; and

P= k[Hr]T[Ht ] ;

[H r] and [Ht] are four-by-one real matrices, the Stokes parameters

of the vector heights of transmitting and receiving antenna, defined by

Eq. (31).

It is evident that in most instances where received power is the

variable of interest, the second representation employing the Stokes

parameters is more simple and straightforward to use. Consisting of

only real elements, this representation is readily adaptable to experi-

mentation involving real physical observables.

It was shown in Section IV that the process of transmission, scat-

tering by a surface, and reception also has a matrix representation in

terms of the vector heights and the two-by-two complex scattering

matrix. The power received after such a process is immediately evi-

dent as the following:
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(34) P = k[ [hr]T [a][h t]! _ ;

here the elements of [hr], [a], and [h t] must be specified in the same

polarization representation; i.e., all linear, all circular, etc. The

elements of [a] are defined in Section II.

For the same reasons mentioned previously, such a representation

as that above is cumbersome; and since the matrices Involve complex

elements, this representation is not easily amenable to the interpre-

tation of experimental data, as seen in Section IV.

It would seem a simple extension to define a pure real, four-

by-four matrix relating uniquely the Stokes parameters of the scattered

wave from the surface to the Stokes parameters of the wave incident

upon the surface. This would yield the following, much simpler form

for the power received after such a process:

(35) P = k[Hr]T[A][H t] .

The elements of [A] are yet to be determined and defined. How-

ever, several properties of these elements can be stated beforehand.

One would expect and require that the elements of [A] should be functions

only of the elements of [a], just as the elements of [Hr] are functions

only of the elements of [hr], and the elements of [Ht] are functions only

of [ht]. Another way of saying the same thing is to state that in order

to be useful, the elements of [A] should be functions of the surface only

and invariant of the form of the incident radiation. This requirement

will be met in the development of [A]. Since the original scattering

matrix [a] contained seven independent quantities in general, one would

expect that only seven of the elements of [A] would be independent, or,

in other words, the matrix [A] should contain combinations of only seven

independent quantities. This must be true since both [A] and [a] com-

pletely characterize the polarization properties of the scattered wave
in terms of those of the incident wave. Since there are 16 real elements

in [A], there must therefore exist nine dependency relationships between

these elements. Note that in the case of backscattering it was shown

that aim = a_l in the matrix [a]. This means that the number of indepen-

dent quantities in [a] is reduced to five instead of seven for this special

case. Thus, only five of the elements of [A] should be independent in

the case of backscattertng.
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The following procedure will be followed in the development of

the scattering matrix [A]: (1) the Stokes parameters of an incident

and scattered wave will be defined in terms of the properties of the

polarized incident and scattered electric field; (Z) the scattered

electric field will then be expressed in terms of the incident electric

field and the elements of the scattering matrix [a]; and (3) the Stokes

parameters of the scattered wave will then be found in terms of the

Stokes parameters of the incident wave and various combinations of

the elements of [a]. This will then define the elements of [A].

T_°_,o_o__._r_ o__o _n_on__e_ _re_i. _,_.Hi. _L
the Stokes parameters of the scattered field are H s, H_s, H$s. H¢s.

The matrix [A] expressing the relationship between them for a given

surface appears in the following equation:

0"11 0"I_ 0"13 0"14

0.21 0.2z 0"z3 0"_4

J

rs = distance from the surface to the point of observation of the scat-
tered wave.

The Stokes parameters of the incident and scattered field are

defined as follows, using Eq. (31):

s s • _s_s#

HS = EoE 8 -_:(_a;_

g-

s s@ s_

Hms _ E(_E 8 +E_E,- H_
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and

_s _,s* _s_s* _i_i* E i*
I_ s_z _e "_0_ ; i__s_:' _e -E_

s s i
The elementary scattering matrix [a] relating E 8 and E_ to E e

and E_ is repeated below_ along with its complex conjugate relationship:

If] _I 1 Ial! a121 I_l

(38) _ _

a2! a22 L E_*

In the definition (Eq. (37)) of the Stokes parameters of the scattered

wavej the following quantities appear;

s s* s_s* s s* s s*
EsE 8 , E_/_ 8 , EsE 0 , and E_E9 .

These quantities can be easily determined for Eq. (38),

incident field and the elements of the scattering matrix.

ship is best summarized by the following matrix:

in terms of the

Their relation-

(39)

 ES* 1

- , $ * ,-
rail _'-II all all all a12 a12 a12

all all al l all all all al2 all

• , :# ,
all a21 a12 a_l all aB2 a12 a22

azl a21 a2z a21 a21 az2 a22 a_2

EO._ e

i*
E_ Eft

Now the quantities in Eq. (39) will be substituted into the definitions

of the Stokes parameters of the _cattered field. Consider first HI s .
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or

where

- _O_O T_:@_:@ --a11a11 E +al2au

i0 _ • _i _i_'+ all all E E + alzaI2 _:_d? + a21 aal

+ az2a21 /_bJ_o ± a21aaz _O-E_ + azaaz_
Ei _i*

¢e.¢

kn = (allall # + azla21*) ; kl2= (alzall* + a2z at| )

kls = (au ai2 + azla_z*) ; k14 = (al_a,z* + azz a_z*)

Now _-HI s can be re-arranged as follows:

1 Et0 i* 1 i i*= _ (kll + kl() E 8 + _ (k|l+ kit ) EcE¢

_i _i _
1 1 (kll - k14 ) _+ (k.- +

1 (klz+ kll) m¢"'O +_(kl_+kl$)_O_¢+2

wi _i* _i _i*

+_j(kll - kll)" J - _3(kll - J

When written in the above form the Stokes parameters of the incident

wave are obvious, i.e.,

2HI s = (kn+ k,()Hli + (kn-kl()Ha i + (k,z + k,s)H3i + j(k,z - kll)H4i.

From this, the following elements of the scattering matrix [A] are

obvious: c_lI, alz, als, a14. They are written in two alternative forms:
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the second form employs the definitions of the phase differences be-

tween the elements of the scatt_, ring matrix [a] as defined in Section

IV by Eq. (21).

1 (all all + alia21 + al2all + aazaz2 )(40) a** = _I (k,1 + k,4) = --
Z 2.

and

=--i [ lalll z + ]alzl _ + [a2/12
2.

+ [a,_Iz ],

* $ * *)I i (allall + azlall - allalz - azzazz
al,-= _ (k**- k,4)=

- 1[ la , I'-+ I
i

- Jallr l],

1 1 ("all
a,_ = _ (k,l+ k,3)= all + all azI + all all + all all )

and

1

- _ [z la,,lla,_lcos(_,-_,) + Zla,.,llal__lcos(_-_l)].

ux4 = (k,z- kx3) = j-(alla11 + azla21 - allalz - al, azz
Z

1

= _ [z la**I[a*,_tsin(a3-8*) + zla,,lla,-llsin(_-_l)] .

The other elements of the matrix [A] will be derived in exactly

the same manner.

_s_s* _s s* *EisE t* + a11 ",_s8= E0 2-_0 -'9-5¢ E9 E all all all

* _* * E t Ei* * vi _-i*+ allalz E_E + allalz ¢ ¢ - allall _8_8

In exactly the same manner as before, define
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(41)
cont.

k_l = all all - a_/all ; kzz = al;all - a2aa;l

k23 : allalz _ - a;lazz ; kz4 = alzalz - a;za22 •

ZHa s= (kzl+ kz4)H# + (kzl- kz4)Hz
i + (kzz + kz3) Hi + j(k2z - ka2 )H4i;

1 1 $ _' _ '_

(_zl= _ (kz!+ kz4) =_ (allan - azla2* + a;zalz - a,_az_ )

I iz: _ [Jail - Ia211 z + Ia121 z " Ia221 z]

1 _ _' $
1 (kzl- kz4) = (arian - a21az, - alza,z + aazaaz )

chz =_

= 1 [I:_D .I:'" Ia211 z - lalz['- + la_zl
Z

and

1 1 , , • _'

am =T(kzz+kza)='_(a*zan - aa_aal + a**ala - az,am )

:_I [Z]alii!al zlcos([AJ.51) - Zlazz[[azZ[cos(_-_,1)]

• - azzazl - analz + az!azz )

= i [z [a**]la,.z ]sln(%-5,) - z laz*}laz21sin{D$ -_2) ] °

Z

_s*.=.s=.s* * ._i _.t* * _,i _t*
H3 s = E(_ 0 -r._..,O_qb = az.lall _.0_8 + az_.a-ll "','=-'8

+ azl aIa "_SZ_ + aaz al_ r_4_ + all a;1 "'8r_8

+ al_aal E E 8 + a11az_ EoE _ + aIza_z _¢_¢ -

Define

(4Z)

$ #

k31 = azI a11_ + atl aal $ ; k3a = azz all a_z azl

k33 = azl alz + al/aaa ; kM = azz alz + alx azz •
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(42)

cont,

.'. 2H3 s = (k31 + k34)H1 i + (k31- k_)Hz i + (k3z+ k33 _-I: + j(k3a- k33)I-_ i" !

* * * z*). 1 (k31 + k_) = 1 (azlall + a11azl + azzalz + anaz..

Z
1

I

2

1 1 • * * *
c_z=_(k31- k_) =_(azlall + azlazl - azzalz - alla2z )

2- •

I 1 , , , ,
%3 = "_"(k3z+ ks,) =_ (azz ali + alzazl + azla_.z + aJ.lazz )

and

1

2

"_" "_" * * * *c_4 = (k3z- k33) = (azz all + alzazl - a_lalz - a11a_z )

2

- E_E = azl all + azz a_1J

* _i _i* * _i _i* * _i _i*
+ azlalz _:0_:d;+.azzalz _:_:¢ - allazl _8_:8

* _i _i* * _i _i* * _i _t*
- axzazl _d_O - all azz _8J_b - alzaz_ J_b_c_ •

Define

(43) k41 -- azl all* - all azl* ; k4z - a22 all* - a12 a21*

= aal a12 - all alz ; I<44 = az2 all - alz azz
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.'. ZH4 s = -j(k41+ k_)Hl i - j(k41- k_)Hz i - j(k42+ k_)H3 i + (k4a-k_)H4i;

• "- C_l= (1<41+ k_) = (allazI - azlall + al2a_z - azzalz )

i [z la..lla..Isin_. + 2la..TIa._1s_n_ ]
2

1

2
[ 2 ]al, I1a,, lsin _', - 2T_.Ifa_,_Isin _2],

and

1

2
[-21a,,IJa_,rsir(_-6,-_,) ÷ 21al_t]a,llsin 8_] ,

1 1 , ,
c_ = _ (k_2 - k_) = y (a22 an* - an at 1 - a_l an + all azz* )

=± [21a,,lla,_,lcos(63-5,-_',)- 2la,,ll_,.,icos h l •
2

Thus Eqs. (35) - (38) constitute the definitions of the 16 real

elements of the scattering matrix relating the Stokes parameters of the

scattered field to the Stokes parameters of the incident field. These

elements are defined strictly in terms of the elements of the amplitude

scattering matrix [a]. These elements, as seen above, can be expressed

entirely in terms of the four amplitudes and three phase differences of the

elements in [a]. This shows that there are only seven independent

quantities in the Stokes scattering matrix [A].

Notice that this matrix [A] is not symmetrical, in general; this

matrix is not symmetrical even in the special case of back-scattering,

when alz = azl _ as can be seen by comparing C_l to c_14.

The developments of this section suggest that in many cases it

might be easier to determine all the real elements of the Stokes scatter-

Lng matrix [A] from measurement, knowing the Stokes parameters of
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the vector heights of the receiving and transmitting antennas (i.e.,

Hlr, Mr2, Hr3, H_, and Hlt, H_t, H3t, H4t) by using Eqo (30). Certainly

knowing all the elements of the Stokes scattering matrix [A] also de-

termines uniquely all the elements of the elementary scattering mat-

rix [a]; as a matter of fact not all the 16 elements of [A] need be known

in order to determine the seven independent quantities in [a]. Only

seven need be known, but they must be the correct seven. In many

cases it might be easier to proceed in this manner than in the manner

of Section IV, which attempted to find the seven quantities of [a] dir-

ectly by power measurement.

In this section the need for a four-by-four real matrix relating

the Stokes parameters of the field scattered from a surface to the

Stokes parameters of the incident field was shown and the properties
of such a matrix were discussed. The role of such a matrix in the

measurement of power received by an antenna after being transmitted

and scattered by a surface is shown in Eq. (30). The actual elements

of this matrix are developed in terms of the elements of the original

scattering matrix [a], and the relations between them are given in

Eqs. (35)- (38).
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